12 Lead ECGs: Axis Determination & Deviation

Axis Determination & Deviation

- Why Axis Determination?
- Definitions
- Axis Quadrants
- Axis Determination
- Axis Deviation
 - Physiologic vs Pathologic

Axis Determination & Deviation

- Why Axis Determination?
 - "Paramedics don't need to know this"
- The ability to identify hemiblocks ("fascicular blocks") is the main reason you need to be able to determine axis
 - "But paramedics don't need to know this either"

Should they know this?

Axis Determination & Deviation

"It is my opinion that the inability to determine the presence of a hemiblock has often been the cause of complete heart block when well-intentioned caregivers have improperly administered lidocaine"

> Mike Taigman, "Taigman's Advanced Cardiology", Brady, 1995, p. 71

Axis Determination & Deviation

- What is Axis?
 - "the general (mean vector) direction of electrical impulses as they travel through the heart"
 - "the sum total of all electrical currents generated by the ventricular myocardium during depolarization"
 - normally from upper right to lower left

Axis Determination & Deviation

- What do you need to determine the axis of an ECG?
 - The 12 Lead ECG
 - Leads CORRECTLY placed on the patient
 - ♦ RA on the right arm
 - ◆LA on the left arm
 - ♦ LL on the left leg
 - Not on the chest or abdomen
 - Knowledge of axis deviation

Axis Reference

- Hexaxial Reference System
 - The six frontal leads create six poles that intersect at the center of the heart
 - Each pole has a positive & negative axis
 - Each + and end is assigned a value expressed in degrees
 - Hexaxial then divided into quadrants (easier to use)

Axis Quadrants Quadrants -90° Left axis +120° -60° -30 to -90 ° **aVR** aVL No Normal axis -150° LAD -30° Man's -30 to 90° Land Right axis 0° I +180° 90 to 180° Normal RAD Extreme Right +30° +150° axis or "No Man's Land +120° +60° +90° -90 to 180° Ш П aVF

Axis Determination

- Quick Axis Determination
 - Determine the net QRS deflection in Leads I and aVF (positive or negative)

		aVF
Normal axis		
LAD		V
RAD	V	
ERAD	V	V

Axis Determination

- Estimating Axis Quickly
 - Determine the net QRS deflection in leads I and aVF (positive or negative)
 - If the net QRS in Lead I is nearly the same as aVF, then axis midway between or 45°
 - * We estimate by calling it, "between +40° and +50°
 - If the net QRS in Lead I is positive and is obviously greater than aVF, then axis closer to lead I
 - * Estimate as "Between 0° and 40°"
 - ◆ If the net QRS in aVF is positive and greater than Lead I, then axis is +50° and +90°

Axis Deviation

- Pathologic vs Physiologic LAD
 - First step
 - ♦ Do I have LAD?
 - ♦ If yes, then proceed on
 - Look at Lead II
 - ◆ If the net QRS deflection is more negative than positive, then the axis must be MORE NEGATIVE than -30°